
Concurrent Connected 
Components

Heidelberg	Laureate	Forum
24	September	2019

Robert	E.	Tarjan
Princeton	University	and	Intertrust Technologies

joint	work	with	Sixue Liu,	Princeton



Observations

Over	the	last	50	years,	computer	scientists	have	
developed	many	beautiful	and	theoretically	
efficient	algorithms.

But	many	such	algorithms	have	yet	to	be	used	in	
practice.		Some	fail	when	used	improperly,	or		
are	less	efficient than	simpler	methods	with	
worse	theoretical	efficiency.



Why?

Software	developers,	pressed	for	time,	may	
choose	the	simplest	solution	that	works,	or	
seems	to.
They	may	use	ideas	from	theory	but	simplify	
them	in	ways	that	may	not work.	(“A	little	
knowledge	is	a	dangerous	thing.”).	Or,	they	may		
build	their	own	solution	and	provide	a	flawed	
efficiency	analysis.



How	should	theoreticians	
respond?

Develop	and	analyze	simple methods.		The	
analysis	can	be	complicated,	but	the	algorithm	
must	be	simple.
Apply	theory	to	analyze	and	improve	methods	
used	or	usable	in	practice.		



My	personal	research	goal
Develop	and	analyze	reference	algorithms:
algorithms	from	“the	book”
a	la	“proofs	from	the	book”	(Erdős)

Algorithms	as	simple	as	possible,	with	provable
resource	bounds	for	important	input	classes,	

and	efficient	in	practice
Systematically	explore	the	design	space

Einstein:	“Make	everything	as	simple	as	
possible,	but	not	simpler”



Connected	Components
The	most	basic	graph	problem?

In	an	undirected	graph,	two	vertices	are	
connected if	there	is	a	path	between	them.		A	
connected	component	(henceforth	just	a	
component) is	a	maximal	set	of	pairwise-
connected	vertices.
Problem:	Given	a	graph,	compute	its	
components.



[vitoshoacademy.com]



[figure	from	D.	Eppstein]



[math.stackexchange]



How	to	represent	components?

Label all	vertices	in	each	component	with	a	
unique	vertex	in	the	component:	can	test	if	two	
vertices	are	in	the	same	component	by	
comparing	their	labels.
Assume	n vertices,	1,…,	n;	m edges
Minimum labeling:	Minimum vertex	in	
component.



Minimum	labeling
75

2

3

1

6

4

1	1
2	1
3	1
4	1
5	1
6	1
7	1



Minimum	labeling
75

2

3

1

6

4

1	1
2	1
3	1
4	1
5	1
6	1
7	1



Classic	sequential	algorithms

Graph	search:	breadth-first,	depth-first	or	any	
other	kind	of	search.
Disjoint	set	union:	Use	a	disjoint-set	(union-find)	
data	structure.	



Maintain	a	collection	of	disjoint	sets,	initially	
singletons,	each	with	a	unique	canonical	
element,	subject	to	two	operations:
unite(x,	y):	If	x	and	y are	in	different	sets,	unite	
these	sets	and	choose	a	canonical	element	for	
the	new	set.
find(x):	Return	the	canonical	element	of	the	set	
containing	x.	

Disjoint	set	union



Components	via	disjoint	set	union

for	each	edge	{x,	y}	do	unite(x,	y)
for	each	v do	v.label =	find(v)

Need	not	actually	execute	the	second	loop,	just	
use	find as	needed:	v and	w are	in	the	same	
component	iff find(v) =	find(w)			



Running	time
Graph	search:	O(m +	n)
Disjoint	set	union	via compressed	trees:
O((m	+	n)α(n,	m/n))	

Disjoint	set	union	uses	only	the	edge	set,	
supports	individual	and	batch	edge	insertions
inverse-Ackermann	amortized time	per	edge	
insertion	or	query



Is	this	the	end	of	the	story?



What	if	the	graph	is	really	big?
[beyondplm.com]



[Max	Delbruck	Center	for	Molecular	Medicine]



[hub.packtub.com]



How	big	is	”big”?

Billions	of	vertices,	trillions	of	edges



Concurrency

Can	we	speed	up	the	computation	using	lots	of	
processes,	as	many	as	O(1)	per	edge?

Computation	models:
Common	memory	(PRAM)
Distributed	memory	(message-passing)



Naïve	algorithm	(“label	propagation”)
replace	each	edge	{v,	w}	by	arcs	(v,	w)	and	(w,	v)
for	each	vertex	v do	v.p0¬ v
i¬ 0
repeat
for	each	arc	(v,	w) do	v.pi+1¬min{v.pi+1,	w.pi}
i¬ i +	1

until	no	parent	changes

• First	three	lines	are	initialization
• v.p is	the	label	of	v	(“p”	for	“parent”)	
• Loop	runs	synchronously in	parallel
• Write	conflicts	resolved	in	favor	of	smallest	value



75

2

3

1

6

4

1		
2		
3		
4				
5		
6		
7		



75

2

3

1

6

4

1	
2	
3	
4			
5	
6		
7	



75

2

3

1

6

4

1	1	
2	2
3	2
4	1		
5	3
6	4	
7	5



75

2

3

1

6

4

1	1	1	
2	2	2
3	2	2
4	1	1		
5	3	2
6	4	1
7	5	3



75

2

3

1

6

4

1	1	1	1	
2	2	2	2
3	2	2	2
4	1	1	1	
5	3	2	2
6	4	1	1
7	5	3	1



75

2

3

1

6

4

1	1	1	1	1	
2	2	2	2	2
3	2	2	2	2
4	1	1	1	1	
5	3	2	2	1
6	4	1	1	1
7	5	3	1	1



75

2

3

1

6

4

1	1	1	1	1	1	
2	2	2	2	2	2
3	2	2	2	2	1
4	1	1	1	1	1
5	3	2	2	1	1
6	4	1	1	1	1
7	5	3	1	1	1



75

2

3

1

6

4

1	1	1	1	1	1	
2	2	2	2	2	2
3	2	2	2	2	1
4	1	1	1	1	1
5	3	2	2	1	1
6	4	1	1	1	1
7	5	3	1	1	1



How	many	steps?

Q(d)	where	d	is	the	maximum	diameter	of	a	
component

This	algorithm	does	concurrent	breadth-first	
search	from	smallest	vertices	in	components	

(plus	extra	work)
Slow	on	high-diameter	graphs	



Why	think	of	labels	as	parents?
The	vertices	v and	the	arcs	(v,	v.p)	define	a	
directed	graph	(digraph)
If	the	only	cycles	are	loops	(arcs	of	the	form	(v,	
v)),	the	digraph	consists	of	a	set	of	rooted	trees:

v	is	a	root	iff v =	v.p
v.p is	the	parent	of	v if	v	¹ v.p

If	labels	never	increase,	all	cycles	are	loops
Flat	tree:	the	parent	of	each	vertex	is	the	root.					



Faster?

Shortcut	(also	called	compress,	halve,	pointer	
jumping):

for	each	v do	v.pi+1¬ v.pi.pi
i¬ i +	1

A	shortcut	roughly	halves	the	depths	of	all	
vertices
Might	lead	to	an	algorithm	that	takes	O(lgn)	
steps	



Simple	labeling	algorithms

Initialization	followed	by	rounds,	each	a	
connect,	one	or	more	shortcuts,	and	possibly	an	
edge	alteration,	repeated	until	no	parent	
changes
connect: update	parents	based	on	arcs
shortcut: replace	parents	by	grandparents
alter: replace	arcs



Ways	to	connect
Given	(v,	w),	replace	v.p or	v.p.p by	w or	w.p (if	
smaller	than	current	value).

direct-connect:
for	each	(v,	w)	do	v.pi+1¬min{v.pi+1,	w}
i¬ i +	1

parent-connect:
for	each	(v,	w)	do	v.pi.pi+1¬min{v.pi.pi+1,	w.pi}
i¬ i +	1



Arc	Alteration

alter:
for	each	arc	(v,	w)	do

if	 v.pi ¹ w.pi then	replace	(v,	w)	by	(v.pi,	w.pi)		
else	delete	(v,	w)



Other	kinds	of	arc	updates

sparsify:	delete	arcs
densify: add	arcs



Algorithm	C	(for	connect)

C:	repeat
parent-connect
shortcut

until	no	parent	changes



Algorithm	A	(for	alter)

A:	repeat
direct-connect
shortcut
alter

until	no	parent	changes



Algorithm	A

75

2

3

1

6

4

1	
2	
3	
4			
5	
6		
7	



Algorithm	A

75

2

3

1

6

4

D
1	1								
2	2					
3	2					
4	1						
5	3					
6	4							
7	5					



Algorithm	A

75

2

3

1

6

4

D	S
1	1	1								
2	2	2					
3	2	2				
4	1	1					
5	3	2				
6	4	1						
7	5	3				



Algorithm	A

75

2

3

1

6

4

D	S	A
1	1	1								
2	2	2					
3	2	2				
4	1	1					
5	3	2				
6	4	1						
7	5	3				



Algorithm	A

75

2

3

1

6

4

D	S	A	D	S
1	1	1					1	1				
2	2	2					2	2
3	2	2					1	1
4	1	1					1	1	
5	3	2					2	2
6	4	1					1	1	
7	5	3					3	1



Algorithm	A

75

2

3

1

6

4

D	S	A	D	S	A
1	1	1					1	1				
2	2	2					2	2
3	2	2					1	1
4	1	1					1	1	
5	3	2					2	2
6	4	1					1	1	
7	5	3					3	1



Algorithm	A

75

2

3

1

6

4

D	S	A	D	S	A	D	
1	1	1					1	1				1
2	2	2					2	2				1
3	2	2					1	1.			1
4	1	1					1	1				1
5	3	2					2	2				2
6	4	1					1	1				1
7	5	3					3	1				1



Algorithm	A

75

2

3

1

6

4

D	S	A	D	S	A	D	S		
1	1	1					1	1				1		1
2	2	2					2	2				1		1
3	2	2					1	1				1		1
4	1	1					1	1				1		1
5	3	2					2	2				2		1
6	4	1					1	1				1		1
7	5	3					3	1				1		1



Algorithm	A

75

2

3

1

6

4

D	S	A	D	S	A	D	S	A		
1	1	1					1	1				1		1
2	2	2					2	2				1		1
3	2	2					1	1				1		1
4	1	1					1	1				1		1
5	3	2					2	2				2		1
6	4	1					1	1				1		1
7	5	3					3	1				1		1



Possible	drawback?

Algorithm	A	maintains	trees	(labels	only	
decrease)
But	it	can	split a	tree	(by	moving	a	subtree)
We	call	an	algorithm	monotonic if	it		does	not	
split	trees
Possible	solution:	when	connecting,	only	change	
parents	of	roots



Root	connection

When	connecting,	only	change	parents	of	roots

parent-root-connect:
for	each	(v,	w)	do	
if	v.p.p =	v.p then	v.p.p¬min{v.p.p,	w.p}



Algorithm	R	(for	root-connect)

R:	repeat
parent-root-connect
shortcut

until	no	parent	changes



Possible	drawback?

Connects	can	produce	deep	trees,	delaying	
further	connections	being	until	shortcuts	flatten	
the	trees
Possible	solution:	repeated	shortcuts	



Algorithm	S	(for	repeated	shortcut)

S:	repeat
parent-connect
repeat	shortcut	until	no	parent	changes

until	no	parent	changes



Surprisingly,	algorithms	C,	A,	R,	and	
S	are	new (as	far	as	we	can	tell)



How	many	steps?



A	little	history	

First	era
1980’s	– 2000’s
Theoreticians
PRAM	(parallel	random	access	machine)
Goal:	minimize	time	and	total	work	(even	if	at	
the	expense	of	algorithm	complication)
Best:	O(logn)	steps,	m/logn processors,

randomized	(Halperin	&	Zwick	1996,	2001)



Second	era
1990’s	– present
Practitioners
Distributed	(message-passing)	model	or	a	
variant,	based	on	new	distributed	computing	
frameworks:	MAPREDUCE,	HADOOP,	etc.
Goal:	speed	in	practice	- algorithm	needs	to	be	
implementable	by	a	competent	programmer



Dismissal	of	existing	PRAM	algorithms	as	too	
complicated	or	not	implementable	on	
distributed	model
Invention	of	“simpler”	algorithms,	but	with	
flawed	proofs	of	resource	bounds



Origins	of	our	algorithms
Algorithm	R	simplifies	a	classical	PRAM	
algorithm	of	Shiloach &	Vishkin,	1982:

• Arbitrary resolution	of	write	conflicts
• Maintains	trees	and	is	monotone
• Does	not do	minimum	labeling
• Two	shortcuts	per	round	(not	needed?)
• Extra	steps	guarantee	that	each	round	
combines	every	flat	tree	(height	at	most	1)	
with	some	other	tree

• O(logn)	steps,	analysis	not	simple



S	&	V show	that	a	simplified	version	of	their	
algorithm	takes	W(d)	steps	if	write	conflict	
resolution	is	arbitrary
The	same	example	is	bad	for	algorithm	R	with	
arbitrary	write	conflict	resolution		

To	get	a	simpler	algorithm,	need	stronger	
write	conflict	resolution



Algorithm	S	simplifies	Greiner’s	Hybrid
algorithm	(1994)

• Each	round	repeats	shortcuts	until	all	trees	are	
flat	

• Uses	direct-connect	and	alter,	but	alternate	
rounds	use	max	value,	not	min	value,	to	
update	parent

• Greiner	claimed	an	O(lg2n)	bound	but	in	fact	
W(n),	not	even	O(d)



Bad	example	for	Greiner’s	algorithm

n



Algorithm	A	simplifies	an	algorithm	of	Stergio,	
Rughwani,	and	Tsioutsiouliklis,	2018:	

• Extended	connect	step	(implies	O(d)	rounds)
• Variant	of	shortcutting	combines	old	and	new	
labels

• No	arc	alteration
Their	“proof”	of	O(lgn)	steps	is	incorrect.
Solves	problems	on	huge	graphs	fast	in	practice,	on	
Hronos platform	(clever	handling	of	message	
contention,	other	optimizations)

Their	paper	got	us	started



Our	bounds
S:	O(lg2n)	rounds	worst-case
O(lgnlglgn)	average	(random	vertex	numbers)
Correct	expected	bound	Q(lgn)?

R:	Q(lgn)	rounds	worst-case
Analysis	uses	a	variant	of	the	potential		
function	of	A	&	S,	novel	multi-round	analysis:	
flat	trees	may	not	change	for	many	rounds

A:	O(lg2n)	worst-case
Correct	bound	Q(lgn)?



Fewer	stepss?
Andoni et	al.,	2018	give	a	complicated	algorithm	
with	an	O((lgd)lglgm/nn)	round	bound	on	a	
powerful	distributed	model
We	(Liu,	Tarjan,	Zhong)	can	simplify	their	
algorithm	and	implement	it	on	a	PRAM	with	
arbitrary resolution	of	write	conflicts
Their	key	idea:	careful	densifying	with	random	
connect	steps,	flat	trees
Our	contribution:	very	sparse	hash	tables	with	
very	few	collisions	



The	Latest

Behnezhad, Dhulipala, Esfandiari, Łącki, 
and Mirrokni, FOCS 2019:

O(lgd + lglgm/nn)	rounds



Asynchronous	processes?

Recent	work	on	concurrent	disjoint	set	union	by	
Jayanti,	Tarjan,	and	Boix (PODC	2016,	2019)	
gives	efficient	asynchronous	concurrent	
algorithms	for	connected	components



Thanks!
For	some	details	see	our	arXiv paper
(revision	of	our	SOSA	2019	paper)

Maybe	wait	for	next	version	(in	process)


